Design and Analysis of Low-power SRAMs

نویسنده

  • Mohammad Sharifkhani
چکیده

The explosive growth of battery operated devices has made low-power design a priority in recent years. Moreover, embedded SRAM units have become an important block in modern SoCs. The increasing number of transistor count in the SRAM units and the surging leakage current of the MOS transistors in the scaled technologies have made the SRAM unit a power hungry block from both dynamic and static perspectives. Owing to high bitline voltage swing during write operation, the write power consumption is dominated the dynamic power consumption. The static power consumption is mainly due to the leakage current associated with the SRAM cells distributed in the array. Moreover, as supply voltage decreases to tackle the power consumption, the data stability of the SRAM cells have become a major concern in recent years. To reduce the write power consumption, several schemes such as row based sense amplifying cell (SAC) and hierarchical bitline sense amplification (HBLSA) have been proposed. However, these schemes impose architectural limitations on the design in terms of the number of words on a row. Beside, the effectiveness of these methods is limited to the dynamic power consumption. Conventionally, reduction of the cell supply voltage and exploiting the body effect has been suggested to reduce the cell leakage current. However, variation of the supply voltage of the cell associates with a higher dynamic power consumption and reduced cell data stability. Conventionally qualified by Static Noise Margin (SNM), the ability of the cell to retain the data is reduced under a lower supply voltage conditions. In this thesis, we revisit the concept of data stability from the dynamic perspective. A new criteria for the data stability of the SRAM cell is defined. The new criteria suggests that the access time and non-access time (recovery time) of the cell can influence the data stability in a SRAM cell. The speed vs. stability trade-off opens new opportunities for aggressive power reduction for low-power applications. Experimental results of a test chip

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DESIGN AND ANALYSIS OF FAST LOW POWER SRAMs A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

This thesis explores the design and analysis of Static Random Access Memories (SRAMs), focusing on optimizing delay and power. The SRAM access path is split into two portions: from address input to word line rise (the row decoder) and from word line rise to data output (the read data path). Techniques to optimize both of these paths are investigated. We determine the optimal decoder structure f...

متن کامل

OVERCOMING THE CIRCUIT DESIGN CHALLENGES IN NANOSCALE SRAMs

Most microprocessors use large on-chip SRAM caches to bridge the performance gap between the processor and the main memory. Due to their growing embedded applications coupled with the technology scaling challenges, considerable attention is given to the design of low-power and high-performance SRAMs. However, there are many challenges in the design of both embedded and stand-alone SRAMs, such a...

متن کامل

An Analysis of Power and Stability in 6T, NC, Asymmetric, PP, and P3SRAM Bit-Cells Topologies in 45nm CMOS Technology

In modern digital architectures, more and more emphasis has been laid on increasing the number of SRAMs in a SoC. However, with the increase in the number of SRAMs, the power requirement also increases, which is not desired. This calls for an urgent need for an SRAM with low dynamic and static power consumption and stability at the same time. The design and simulation work for 6T-SRAM, NC-SRAM,...

متن کامل

Low Power SRAMs for Battery Operation

In recent years, a growing class of personal computing devices has emerged includingportable desktops, digital pens, and new audioand video-based multimedia products.Other new products include wireless communications and imaging systems such as personaldigital assistants, personal communicators and smart cards. These devices and systemsdemand high-speed, high-throughput computat...

متن کامل

Ultra-Dynamic Voltage Scalable (U-DVS) SRAM Design Considerations

With the continuous scaling down of transistor feature sizes, the semiconductor industry faces new challenges. One of these challenges is the incessant increase of power consumption in integrated circuits. This problem has motivated the industry and academia to pay significant attention to low-power circuit design for the past two decades. Operating digital circuits at lower voltage levels was ...

متن کامل

Generalized Water-filling for Source-Aware Energy-Efficient SRAMs

Conventional low-power static random access memories (SRAMs) reduce read energy by decreasing the bit-line voltage swings uniformly across the bit-line columns. This is because the read energy is proportional to the bit-line swings. On the other hand, bit-line swings are limited by the need to avoid decision errors especially in the most significant bits. We propose an information-theoretic app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006